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Abstract. A simplified version of White’s density matrix renormalization group (DMRG)
algorithm has been used to find the ground state of the free particle on a tight-binding lattice.
We generalize this algorithm to treat the tight-binding particle in an arbitrary potential and to find
excited states. We thereby solve a discretized version of the single-particle Schrödinger equation,
which we can then take to the continuum limit. This allows us to obtain very accurate results for
the lowest energy levels of the quantum harmonic oscillator, anharmonic oscillator and double-well
potential. We compare the DMRG results thus obtained with those achieved by other methods.

1. Introduction

The density matrix renormalization group (DMRG) method [1] originated from the study
of a very simple problem: the quantum behaviour of a single particle on a lattice [2]. The
standard renormalization group (RG) method applied to this problem fails completely and the
understanding of this failure was the key that led to the DMRG. The DMRG has since been
sucessfully applied to interacting many-body problems in condensed matter and statistical
mechanics and it is very promising in atomic, molecular and nuclear physics and field theory
(see [3, 4] for an overall account of the DMRG). In view of all these developments, it is
interesting to come back to the origin of the DMRG and see how it works for a single particle
under the action of a potential. This problem is not purely academic since it provides a
testbed for new ideas and techniques relating to the DMRG in simple models provided by
quantum mechanics (QM). In addition, these simple models can contain interesting physics.
For example, the instantons of gauge theories have a very nice analogue in the double-well
potential. We also hope that the DMRG will provide an accurate new method to solve the
Schr̈odinger equation numerically.

2. The problem

The purpose of this paper is to present a DMRG algorithm for finding the ground state and
excited states of a particle confined to the real line−∞ < x < ∞, and whose dynamics is
governed by the HamiltonianH = p2 + V (x), wherep2 is the kinetic energy andV (x) is
the potential energy. The first step before we can apply the DMRG to QM is to discretize
the Schr̈odinger HamiltonianH . This can be done by constraining the position of the particle
to take on the discrete valuesxn = h(n − N+1

2 ), (n = 1, 2, . . . , N), whereN is the number
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of allowed sites andh is the lattice spacing. The particle is thus confined to a box of size
R = xN −x1 = h(N −1). After this discretization, the HamiltonianH = p2 +V (x) becomes
theN ×N matrix

Hn,m =


2/h2 + Vn n = m
−1/h2 |n−m| = 1

0 otherwise

(1)

where Vn = V (xn). Conversely, one can recover the Schrödinger Hamiltonian from
equation (1) by taking the continuum limith → 0, N → ∞ with R = N × h kept fixed,
and then lettingR →∞. In the free case,V (x) = 0, the discrete Hamiltonian, equation (1),
coincides, up to the overall factor 1/h2, with the Hamiltonian studied by White and Noack
in [2].

3. The DMRG algorithm

The problem is to diagonalize theN × N matrix, equation (1), using DMRG methods. The
basic strategy is to split the box of lengthN into a left blockBL` with ` sites, two middle
sites•• and a right blockBRN−`−2 with N − ` − 2 sites, so that the whole system can be
represented asBL` • •BRN−`−2. If no truncation is performed,BL` contains all the degrees of
freedom associated with thèsites on the left-hand side, and similarlyBRN−`−2 describes all
the degrees of freedom on the right-hand side.

The DMRG method is based on the idea that the low-energy properties of the system can
be described by a few degrees of freedom. In particular, if we are only interested in the ground
state of the system we may simply consider the blocksBL` andBRN−`−2 to be described by
a single degree of freedom. The effective Hamiltonian of the system then becomes a 4× 4
matrix whose diagonalization is straightforward. Once this is done, the next step is to make
a partition of the system either asBL`+1 • •BRN−`−3 or asBL`−1 • •BRN−`−1, i.e. make the left or
right side grow by one site, and repeat the diagonalization. One then iterates this procedure,
moving the position of the partition,̀, leftwards and rightwards through the lattice. After
several such sweeps through the lattice, the DMRG converges to a fixed-point solution which
reproduces the ground state of the free tight-binding particle to high accuracy.

3.1. Superblock Hamiltonian

This method can be generalized to treat theNE > 1 lowest energy levels, i.e.NE − 1 excited
states. The basic idea is that the left and right blocksBL andBR must containNE degrees
of freedom, one for each low-energy state. The superblock HamiltonianHSB is therefore a
(2NE + 2)× (2NE + 2) matrix given by

HSB =


HL −vL 0 0
−v†

L hCL −1/h2 0
0 −1/h2 hCR −v†

R

0 0 −vR HR

 (2)

whereHL andHR areNE×NE matrices,vL andvR areNE-component column vectors, andhCL
andhCR are real numbers. The meaning of these quantities is as follows:HL is the Hamiltonian
which describes the interactions inside the blockBL, −vL describes the interaction between
BL and the site next to it in the superblockBL • •BR andhCL is the Hamiltonian on a single
site. The quantitiesHR, −vR andhCR for the right half have an analogous meaning. The
two terms proportional to−1/h2 in equation (2) come directly from the off-diagonal terms in
equation (1).
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The Hamiltonian, equation (2), describes the superblockBL` • •BRN−`−2 and depends on

the value of̀ , i.e.HSB = H(`)
SB . In particular, the diagonal entrieshCL andhCR are given by

hCL = 2

h2
+ V`+1 hCR = 2

h2
+ V`+2. (3)

Since the blocksBL,R containNE effective sites,H(`)
SB can be defined for̀ = NE,NE +

1, . . . , N −NE − 2.

3.2. DMRG truncation

The superblock can be used either to enlarge the left block by one site, i.e.BL` • → B ′L`+1, or
the right block. Let us examine how to do this for the left block. ForNE = 1, the ground
state of the superblock Hamiltonian, equation (2), has four components, which we designate
(aL, aCL, aCR, aR). The projection of this state ontoBL• yields (aL, aCL), which must then

be normalized by dividing byNa =
√
a2
L + a2

CL. The new effective Hamiltonian,H ′L, andv′L
are then given by

H ′L = (a′L, a′CL)
(
HL −vL
−vL hCL

)(
a′L
a′CL

)
(NE = 1) (4)

and

v′L = a′CL (5)

wherea′L = aL/Na anda′CL = aCL/Na.
We next describe how to generalize this construction toNE > 1. First we have to obtain the

lowestNE eigenstates ofHSB , which we shall denote as{(aL,i, aCL,i , aCR,i,aR,i)}NEi=1, where
aL,i andaR,i areNE-component vectors. These vectors are projected onto a set ofNE vectors
of the blockBL•, i.e.,{(aL,i, aCL,i)}NEi=1. Since this set of vectors is not generally orthogonal,
we orthonormalize them explicitly. Let us call the set of vectors so obtained{(a′L,i, a′CL,i)}NEi=1.
The projectionBL• → B ′L is performed by an(NE + 1)×NE matrix

A′ =
(
a′L,1 . . . a′L,NE
a′CL,1 . . . a′CL,NE

)
. (6)

Operators associated withB ′L are transformed into the new basis via

H ′L = A′†
(
HL −vL
−vL hCL

)
A′ (7)

and

v′L,i = a′CL,i (i = 1, . . . , NE). (8)

Observe that we do not need to construct a density matrix to define a unique projection. This
is a peculiarity of the single-particle nature of the problem. In a many-body problem, we
would have to perform the projection using the reduced density matrix due to the non-single-
valuedness of the projected wavefunctions.

3.3. Initialization and sweeps

The finite-system DMRG algorithm consists of a warm-up phase in which the system is built
up to its actual lengthN , followed by several leftwards and rightwards ‘finite-system’ sweeps
which are repeated until convergence is achieved. The initial superblock of the warm-up phase
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is taken to beBLNE • •BRNE , whereHL (HR) are taken to be the first (last)NE entries of the
matrix, equation (1), i.e.

HL = (hn,m, n,m = 1, . . . , NE)

HR = (hn,m, n,m = N −NE + 1, . . . , N).
(9)

Similarly, vL = (0, 0, . . . ,1) and vR = (1, 0, . . . ,0). For a symmetric potential, i.e.
V (−x) = V (x), the quantitiesHR, vR for the right side can be obtained from the left ones by
the reflection operation,n→ NE − n + 1. This property applies at each step of the warm-up
phase of the algorithm and corresponds to the well known reflection operation of the infinite-
system DMRG algorithm for interacting systems. Of course, for a non-symmetric potential
the right block,BR, cannot be formed by reflecting the left one,BL.

The behaviour of the location of the added site,`, during the warm-up process and the
first sweep can be summarized in the following scheme:

warm-up: ` = NE, . . . , N
2
− 1

left→ right: ` = N

2
, . . . , N −NE − 2

right→ left: ` = N −NE − 2, . . . , NE

left→ right: ` = NE, . . . , N
2
− 1

(10)

where we takeN to be even. We define a sweep to be a complete cycle that ends when the two
sites of the superblockBL` • •BRN−`−2 are in the middle of the chain.

4. Analysis of errors

In this paper we present the results obtained with the DMRG algorithm applied to three well
known potentials and compare them with the results of other methods. The three potentials
we shall consider are the harmonic oscillator, the anharmonic oscillator and the double-well
potential.

In order to take the continuum limit, we enlarge the number of lattice sites,N , while
taking the discretization step,h, to be smaller and smaller so thatR = N × h. During this
process, it it important to determine the accuracy of the DMRG results for the energy levels
asN increases. To this end, we first compare the DMRG results with the known exact results
for the tight-binding particle with fixed boundary conditions at the ends. The exact spectrum
is given by:

9n(j) = Nn sin
π(n + 1)

N + 1
j E(ex)n = 4 sin2

(
π(n + 1)

2(N + 1)

)
(11)

wheren = 0, 1, . . . , N −1 denotes the energy levels,j = 1, 2, . . . , N are the lattice sites and
theNn are normalization constants.

We have made runs targeting theNE = 1, 2, 3 lowest-lying states and have computed the
relative error of the energy levels,

δEi = |(Ei(DMRG)− E(ex)i )/E
(ex)
i | i = 1, . . . , NE. (12)

ForNE = 1, a slowing down of the convergence and, eventually, numerical instabilities due
to round-off error appear on chains of length of order 500 or greater due to a vanishing matrix
element connecting the blocks. Since this problem does not occur whenNE > 2, we take
NE > 2 in the following.

In figure 1, we plot the relative error in the ground state energy forNE = 2 and 3
as a function ofN . These results were obtained with the finite-system algorithm described
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Figure 1. Logarithm of the relative error in the ground state energy of a free particle on a tight-
binding lattice as a function of the logarithm of the number of sites of the chain, varying the number
of targeted states,NE .

above, taking a sufficient number of finite-system sweeps to obtain convergence. Typically,
convergence was achieved after five sweeps. In this plot we see that for a fixed number of
targeted states,NE , the error increases with the number of sitesN . The range goes from
δE0 = 5.1× 10−15 for N = 10 to δE0 = 1.4× 10−10 for N = 60 000(NE = 2), while
δE0 = 2.6× 10−15 for N = 10 andδE0 = 4.4× 10−9 for N = 60 000(NE = 3). Likewise,
when the numberNE is increased we observe that the errors decrease and this effect is more
apparent when the number of sitesN is bigger. In figure 2, we plot analogous results for the
first excited state, and find that the error behaves essentially the same as for the ground state.

The lesson to be learned from this analysis is that care must be taken when going to large
lattice sizes because the DMRG tends to loose numerical accuracy with increasingN . On the
other hand, targeting a larger number of statesNe actuallyimprovesthe accuracy of each state.
In going to the continuum limit, there is therefore a trade-off between the discretization error
which can be reduced by takingN large, and the error in the DMRG results [5].

5. The harmonic oscillator

We first apply the continuum limit of the DMRG to a simple and exactly solvable model: the
harmonic oscillator. We write the Hamiltonian

H = P 2 +X2 (13)

whereP = −i d
dx . The corresponding exact spectrum with this normalization isEn = 2n + 1,

n = 0, 1, . . . . We can use this example to calibrate the accuracy of the DMRG by comparing
with the exact solution. In table 1, we present the results for the two lowest eigenstates, for
whichE0 = 1 andE1 = 3. These results are obtained using five finite-system sweeps. We
have checked that we obtain the same results to within roundoff error when performing up to
20 sweeps. We measure the DMRG energies during the final sweep in the configuration in
which the left block and the right block are the same size, i.e. the single sites in the superblock
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Figure 2. Logarithm of the relative error in the first excited state energy of a free particle on a
tight-binding chain as a function of the logarithm of the number of sites of the chain, varying the
number of targeted states,NE .

Table 1. The difference between the exact continuum energies,En = 2n + 1, and the energies on
the discretized lattice,E0(N) andE1(N), for the ground and first excited states of the harmonic
oscillator obtained with the DMRG and exact diagonalization. HereN is the number of sites on
the chain,h is the discretization step andR is the size of the continuum system. The errors (digits
in parentheses) are determined using the GCC procedure explained in the text.

Method N h R = N × h 1.0− E0(N) 3.0− E1(N)

DMRG 100 0.1 10 6.253 912 540(370)× 10−4 3.128 521 663(378)× 10−3

Exact diag. 100 0.1 10 6.253 912 540 310× 10−4 3.128 521 663 376× 10−3

DMRG 1 000 0.01 10 6.249 89(322)× 10−6 3.124 333 8(564)× 10−5

Exact diag. 1 000 0.01 10 6.249 892 56× 10−6 3.124 333 779 2× 10−5

DMRG 5 000 0.002 10 2.498(36)× 10−7 1.2427(28)× 10−6

DMRG 10 000 0.001 10 6.2(45)× 10−8 3.051(90)× 10−7

DMRG 20 000 0.0005 10 1.(56)× 10−8 7.0(80)× 10−8

DMRG 20 000 0.001 20 6.2(64)× 10−8 3.12(50)× 10−7

DMRG 50 000 0.0002 10 (2.87)× 10−9 (4.99)× 10−9

DMRG 50 000 0.0004 20 (0.961)× 10−8 (5.00)× 10−8

DMRG 100 000 0.0001 10 (−0.71)× 10−8 (−4.15)× 10−8

DMRG 100 000 0.0002 20 (0.16)× 10−8 1(.24)× 10−8

are at the middle of the chain. The error bars in the table are given by the amount of variation
in the energy during the last finite-system sweep, i.e. the value given is obtained in the last
diagonalization step, but the digits in parentheses vary during previous diagonalizations in the
sweep. We call this method of estimating the error the global convergence criterium (GCC).
However, the GCC is overly restrictive, as can be seen by examining the difference between
the continuum ground state energy and the DMRG ground state energy, plotted in figure 3 as a
function of the DMRG step during five finite-system sweeps forN = 3000 andh = 0.01. One
can clearly see regions in which the solution has been stabilized as well as depleted regions
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Figure 3. The difference between the ground state energy of the harmonic oscillator obtained with
the DMRG during five sweeps forN = 3000 andh = 0.01, and the exact continuum value. The
data plotted starts after convergence in finite-system sweeps has been achieved.

near the ends of the chains in which the DMRG energy is higher. In the inset, we plot the
error in energy for a single back-and-forth sweep on an expanded scale. This suggests that the
appropriate region to measure the energy must be located away from the ends. We refer to this
as a local convergence criterium (LCC). If we adopt the LCC, then the number of stabilized
digits increases. This is something which we will examine when comparing DMRG results
and exact results in the forthcoming tables.

In figure 3, the DMRG ground state energy converges variationally from above to the
exact ground state energy (note thatE0(DMRG) is negated in the plot) for a particular
discretization of the system. This energy is close to the plateaus in figure 3 and is lower
than the exact continuum energy, i.e. there is a discretization (or finite-size) correction which
is not necessarily variational, and which is negative here. This can also be seen in table 1 for
the exact diagonalization as well as for the DMRG results.

In table 1 we present several runs in which the final sizeR of the continuum system is
varied in order to check that a convergence has been achieved to a certain number of digits.
If R is large enough, the effect of changing it is not very large due to the exponential fall-off
of the wavefunctions. We find similar dependence of the error onR for higher excited states.
Thus we find that the exact spectrum is very well reproduced by the continuum limit of the
DMRG.

In table 1 we also show, when possible, energies obtained via exact diagonalization of the
Hamiltonian matrix, equation (1). This is possible for system sizes of up to aboutN = 2000.
Exact diagonalization is much more expensive in computer time than DMRG, and yields
energies for a particular system size that agree with the DMRG to 14 significant digits. This
level of agreement is quite remarkable given that the largest matrix diagonalized in the DMRG
procedure is 6× 6.
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Table 2. DMRG results for the anharmonic oscillatorH = P 2 +X2 +CX4 in the continuum limit.
The notation is the same as that in table 1.

Method N h R = N × h E0 E1 C

DMRG 30 000 0.001 30 1.065 285 43(310) 3.306 871 58(195) 0.1
DMRG 20 000 0.001 20 1.065 285 43(289) 3.306 871 58(195) 0.1
Borel–Pad́e [8] 1.065 285 50(954) 0.1
Hill [7] 1.065 285 50(954) 0.1
DMRG 30 000 0.001 30 1.392 351 48(046) 4.648 811 63(809) 1
DMRG 20 000 0.001 20 1.392 351 48(038) 4.648 811 63(809) 1
Borel–Pad́e [8] 1.392 350(6) 1
Hill [7] 1.392 531 6 1
DMRG 30 000 0.001 30 2.449 173(484) 8.598 999 3(093) 10
DMRG 20 000 0.001 20 2.449 173(484) 8.598 999 3(093) 10
Variational [9] 2.449 174 072 10
Borel–Pad́e [8] 2.440(527) 10
Hill [7] 2.449 174 0 10

6. The anharmonic oscillator

Now that we have checked that the continuum limit of the DMRG accurately reproduces
a well known solvable case, we apply DMRG to the anharmonic oscillator, which has no
closed analytical solution (see [6] and references therein). Here our purpose is to compare the
efficiency of DMRG with that of other standard methods employed in single-particle QM. We
treat the Hamiltonian

H = P 2 +X2 +CX4 (14)

whereC is a positive coupling constant and we have normalized the mass term.
In table 2, we display the DMRG results obtained using a similar analysis as for the

harmonic oscillator. We compute the two lowest energy states, compare them with exact
diagonalization results, and obtain the same accuracy as for the harmonic oscillator. We also
compare with the results of a number of methods commonly used in standard QM such as
the Hill determinant method [7], Borel–Padé approximants of the perturbation series [8] and
variational computations in the energy basis of the harmonic oscillator [9].

We have computed the state energies for various coupling constantsC = 0.1, 1, 10,
ranging from weak to strong coupling. We notice that while the Hill determinant method
and the Borel–Pad́e perform better for weak couplings, the continuum limit of the DMRG
performs equally well for the whole range of couplings. This is due to the variational nature
of the method.

From table 2, one can see that the agreement of the DMRG with the other methods is
excellent.

7. The double-well potential

We hope that it is now clear that the DMRG method is an excellent method to compute the
energy spectrum and wavefunctions in quantum mechanical problems. We now apply it to an
anharmonic oscillator with a potential in the shape of a double well. This problem is particularly
interesting for several reasons. One, as we shall see, is that the system has a tunable gap which
can be used to investigate the dependence of the convergence of the DMRG on the size of the
gap, and the other is its potential as a new non-perturbative method for quantum field theory
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problems. We shall not pursue the latter goal here but will only point out that a number of
non-perturbative RG techniques have been established since Wilson’s original formulation of
the RG [10]. These formulations are called exact renormalization group (ERG) because they
are based in exact RG flow equations (see [11] for a recent review on this subject). However,
since these exact equations are not exactly solvable in general, one usually has to resort to
approximate methods in practical applications. The question then arises as to how good these
approximations are. In order to check their validity, they are applied to well known problems
in single-particle QM. The rationale is that if they are not even able to quantitatively reproduce
the physics of these simple systems, their application to truly field theoretical problems would
be even less successful.

The Hamiltonian for this potential reads

H = P 2 −X2 +CX4 (15)

whereC is the coupling constant and we have normalized the negative mass term. The potential
has two minima at the positions

x
(±)
0 = ± 1√

2C
. (16)

Classically, these minima are degenerate in energy. If treated perturbatively, quantum
fluctuations can modify the classical energy but not lift the degeneracy. Splitting of the energy
levels can only occur if quantum tunnelling between the two wells is taken into account.

In this symmetric potential, the energies can be arranged into pairsE(±)n depending on
their even(+) or odd(−) parity. The energy gap from the ground state to the first excited state
is then defined as

10(C) = E(−)0 (C)− E(+)0 (C). (17)

In the weak-coupling limit (C very small), the gap10(C) can be computed using an
instanton approximation plus higher corrections [12], giving the asymptotic formula

10(C) = 8

√√
2

πC
e−

√
2

3C

1− 71

1!

(
2
√

2

12

)
C − 6299

2!

(
2
√

2

12

)2

C2

− 2691 107

3!

(
2
√

2

12

)3

C3 + O(C4)

 . (18)

This exponentially decreasing behaviour produces an essential singularity in the energy gap.
Our purpose is to capture this highly nontrivial behaviour with the DMRG.

One can understand what happens to the system in the weak coupling limit on physical
grounds. From equation (16), we see that the distance between the minima diverges asC → 0,
so that we effectively end up with a system formed by two independent potential wells. The
system then becomes exponentially degenerate for each pair of energy levels and thus gapless.

It is also interesting to use this quantum mechanical example to test the behaviour of
DMRG for gapless systems. This is a very important issue when dealing with the strongly
interacting quantum many-body systems to which DMRG is usually applied. Since its early
development, it has been known that the the DMRG method [1] produces much more accurate
results for finite correlated systems with a gap than for gapless systems. For gapless systems
one has to use the finite-system algorithm on larger system sizes than for gapful systems in
order to obtain results of comparable accuracy [13]. We show below that the DMRG handles
well the case in which the gap between the ground state and the first excited state becomes
negligibly small, i.e. when the two minima of double-well potential are far apart.
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Table 3. DMRG results for the double-well potentialH = P 2 − X2 + CX4 in the continuum
limit. The notation is the same as that in table 1. R–R stands for the results obtained with the
Rayleigh–Ritz method explained in the text.

Method C N h E0 1

DMRG 1 1 000 0.01 0.657 644 253 61(29) 2.176 825 710(298)
Exact diag. 1 1 000 0.01 0.657 644 253 611 7 2.176 825 710 302
DMRG 1 20 000 0.0005 0.657 652 983(568) 2.176 883 05(297)
R–R 1 0.657 653 005 181 2.176 883 197 05
DMRG 0.6 20 000 0.0005 0.391 952 61(873) 1.633 284 7(928)
R–R 0.6 0.391 952 633 37 1.633 284 884 6
DMRG 0.1 40 000 0.001 −1.265 492 92(138) 0.112 433 68(739)
R–R 0.1 −1.265 492 837 21 0.112 433 706 14
Inst. 0.1 0.114 474 508 49
DMRG 0.06 60 000 0.0005 −2.823 639 49(203) 0.007 299 766 1(673)
R–R 0.06 −2.823 639 458 45 0.007 299 752 6870
Inst. 0.06 0.007 313 907 0463
DMRG 0.02 90 000 0.0004−11.106 472 434(074) 2.1(074)× 10−9

R–R 0.02 −11.106 472 414 954 2.104 3× 10−9

Inst. 0.02 2.107 37× 10−9

In table 3, we present the results for the lowest two energy levels and the gap upon
varying the coupling constant fromC = 1.0–0.1. These values range from the strong- to
the weak-coupling regime. The DMRG results are obtained as described previously after five
finite-system sweeps. We also compare with exact diagonalization methods whenN < 2000
and find excellent agreement, typically up to ten digits or better.

In table 3, we have also computed the energy variationally using the Rayleigh–Ritz method
[6] (R–R). We compute the expectation value of the Hamiltonian, equation (15), in the energy
basis of the harmonic oscillator consisting of up toM = 1000 states. In this representation,
the non-vanishing elements of the Hamiltonian lie within a band and are given by

〈n|H |n〉 = C[ 1
4n(n− 1) + 1

4(2n + 1)2 + 1
4(n + 1)(n + 2)]

〈n|H |n + 2〉 = −
√
(n + 2)(n + 1) +C

[√
(n + 1)(n + 2)(n + 3

2)
]

〈n|H |n + 4〉 = C 1
4

√
(n + 4)(n + 3)(n + 2)(n + 1).

(19)

In this representation, the Hamiltonian is already in the continuum limit. The R–R theorem
states that theM resulting energy levels will be upper bounds to the firstM exact energy levels.
As seen in figure 4, the agreement between exact and DMRG methods is excellent for this
range of the coupling constant and, in fact, the curves appear overlapped in the plot.

Recently, one ERG method was applied to the study of the double-well potential with the
aim of probing the method in the whole range of coupling constants [14]. This method is based
on the solution of the local potential approximation of the Wegner–Houghton equation [15,16].
The outcome of these investigations is that the ERG performs very well in the strong-coupling
regime where no perturbation treatment is available. However, in the weak-coupling limit, the
ERG fails to reproduce the behaviour found with the instanton formula, equation (18).

To check the performance of the DMRG as compared with the instanton formula,
equation (18), in the very weak-coupling limit, we have extended our computations from
C = 0.1–0.02, where the gap becomes as smallO(10−9). In table 3 and in figure 4, we
present the results from the DMRG, R–R and the instanton formula. We see that DMRG is an
excellent non-perturbative method in the entire range of coupling constants and that it is able
to quantitatively capture the exponentially decreasing behaviour of the gap.
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Figure 4. Energy gap10(C) in the anharmonic double-well potential as a function of the coupling
constantC in the very weak coupling regime (table 3). Here the results of the three methods: the
DMRG, instanton calculation and R–R overlap. Results for a wider range ofC (table 3) are shown
in the inset.

8. Conclusions and prospects

The DMRG method we have presented in this paper is a natural extension of one introduced
by White to illustrate the DMRG algorithm for the most simple problem: a free particle on
a tight-binding chain [3]. We have shown that the DMRG works with very high precision,
yielding an accurate determination of the lowest energy levels for three different potentials: the
harmonic oscillator, the anharmonic oscillator and the double-well potential. Its performance
is better than or comparable with other known perturbative and non-perturbative methods. For
single-particle QM, the DMRG does not require the use of a density matrix. The number of
states retained in the RG procedure is equal to the number of states to be obtained,NE . Aside
fromNE , the variational wavefunction of the DMRG has no adjustable parameters.

Single-particle QM has been widely used in the past as a testing ground for concepts
or techniques that can be applied to more complex systems. With this in mind, we have
studied quantum tunnelling through a potential barrier for the double-well potential and found
a value of the gap very close to the exact one for a large range of coupling constants. This
is an interesting result because it shows that the DMRG can, in principle, handle tunnelling
phenomena better than other methods such as the ERG [14]. An interesting topic for future
work would be to explore to what extent this feature holds for many-body systems or for field
theory.

Although the DMRG was originally developed as a ground state technique, there have
recently been new developments in using it to obtain dynamical information [17, 18]. In the
context of single-particle QM, one could ask whether the DMRG could give information about
phase shifts, decay rates, etc. These and other questions remain to be investigated.
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